\square

SUMMATIVE ASSESSMENT-1(2011)

Mathematics

CLASS-X
Time Allowed - 3hours
M.M - 80 marks

GENERAL INSTRUCTIONS

(i) All questions are compulsory.
(ii) This question paper consists of $\mathbf{3 4}$ questions divided into four sections $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ and \boldsymbol{D}.
(iii) SECTION A are multiple choice questions carrying one mark each.
(iv) SECTION B are very short answer type questions carrying two marks each.
(v) SECTION C are short answer type questions carrying three marks each.
(vi) SECTION \boldsymbol{D} are long answer type questions carrying four marks each.
(vii) Use of calculators and cell-phones are not permitted in the Examination Hall.

SECTION - A

Multiple choice questions Q1 to Q10, each carry 1 mark

- Write the correct answer in each of the following:

1. The least common multiple and the greatest common divisor of two numbers are 336 and 8 respectively If one of the numbers is 48 , then the second number is
A: 54
B: 56
C: 62
D: 64
2. If the number 7875 can be prime factorized as $7875=3^{a} \times b^{3} \times c^{1}$, then what are the respective values of a, b, and c ?
A: 2, 3 and 1
B: 2, 2 and 5
C: 2, 3 and 5
D: 2, 5 and 7
3. Tan A is equal to
A: $\frac{\cos A}{\sqrt{1-\cos ^{2} A}}$
B: $\frac{\sec A}{\sqrt{1-\sec ^{2} A}}$
C: $\frac{\sin A}{\sqrt{1-\sin ^{2} A}}$
D: $\frac{1}{\sqrt{1-\sin ^{2} A}}$
4. The triangles that are always similar are
[^0]| cbse | CBuess |
| :--- | :--- |

A: isosceles triangles
B: scalene triangles
C: right triangles
D: equilateral triangles
5. The pair of equations $x=a$ and $y=b$ graphically represent lines which are
A: parallel
B: intersecting at (b,a)
C : coincident
D : intersecting at (a, b)
6. The values of mean and median are 5 and 6 respectively. The value of mode in such a situation is approximately equal to
A: 4
B: 8
C: 16
D: 18
7. In the given figure, $\triangle \mathrm{PQR}$ and $\triangle \mathrm{DEF}$ are similar to each other. $\sin \mathrm{R}=\frac{3}{5}$ and $\mathrm{DE}=12 \mathrm{~cm}$. The length of the side DF is

A: 15
B: 16
C: 20
D: 21
8. If $\sec A=\operatorname{cosec} B=\frac{15}{7}$, then $A+B$ is equal to
A: Zero
B: 90°
$\mathrm{C}:<90^{\circ}$
$\mathrm{D}:>90^{\circ}$
9. $\operatorname{Sin}\left(50^{\circ}+\theta\right)-\operatorname{Cos}\left(40^{\circ}-\theta\right)$ is equal to
A: 1
B: 0
C: 2
D: none of these
10. Which of the following is the quadratic polynomial whose zeroes are $\frac{1}{2}$ and -3 ?
A: $x^{2}+\frac{5}{2} x+\frac{3}{2}$
B: $x^{2}-\frac{5}{2} x+\frac{3}{2}$
C: $x^{2}+\frac{5}{2} x-\frac{3}{2}$
D: $x^{2}-\frac{5}{2} x-\frac{3}{2}$

cbsefguess	CBSEGuess.com

SECTION - B

Very Short Answer type questions Q11 to Q18, each carry 2 Marks

11. Explain why $7 \times 11 \times 13+13$ and $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1+5$ are composite numbers.
12. Determine the value of k for which the system of equation

$$
\begin{aligned}
& 2 x+k y=1 \\
& 5 x-7 y=5
\end{aligned}, \text { has a unique solution. }
$$

13. Find the quadratic polynomial, the sum and product of zeroes are $\frac{1}{4},-1$
14. In two similar triangles ABC and DEF , If $\mathrm{AB}=1.2 \mathrm{~cm}$ and $\mathrm{DE}=1.4 \mathrm{~cm}$, then find the ratio of the areas of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$.
15. A girl of height 90 cm is walking away from the base of a lamp - post at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. If the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds.
16. If $\tan (A-B)=\frac{1}{\sqrt{3}}$ and $\tan (A+B)=\sqrt{3}, 0^{\circ}<A+B \leq 90^{\circ}, A>B$ find A and B.
17. If the mode of the following distribution is 68 , then find the missing frequency $\left(f_{1}\right)$ corresponding to the class interval $60-80$.

Class interval :	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Frequency :	7	14	8	f_{1}	3

18. The following table gives production yield per hectare of wheat of 100 farms of a village.

Production yield (in kg/ha)	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$	$75-80$
Number of farms	2	8	12	24	38	16

Change the distribution to a more than type distribution.

SECTION - C

Short Answer type questions Q19 to Q28, each carry 3 Marks

19. Prove that $\sqrt{3}$ is an irrational number.
20. Use Euclid's division lemma to show that the square of any positive integer is either of the form 3 m or $3 \mathrm{~m}+1$ for some integer m .
[^1]| cbse Figuess | CBSEGuess.com |
| :---: | :---: |

21. A two digit number is 4 times the sum of its digits. If 18 is added to the number; the digits are reversed. Find the number.

OR

Places A and B are 100 km apart on a highway. One car starts from A and another from B at the same time. If the cars travel in the same direction at different speeds, they meet in 5 hours. If they travel towards each other, they meet in 1 hour. What are the speeds of the two cars?

OR

2 women and 5 men can together finish an embroidery work in 4 days, while 3 women and 6 men can finish it in 3 days. Find the time taken by 1 women alone to finish the work, and also that taken by 1 man alone.
22. Obtain all other zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.
23. If $\cos \theta+\sin \theta=\sqrt{2} \sin \theta$, show that $\sin \theta-\cos \theta=\sqrt{2} \cos \theta$.

OR

If $\tan \theta+\sin \theta=\mathrm{m}, \tan \theta-\sin \theta=\mathrm{n}$, then show that $m^{2}-n^{2}=4 \sqrt{m n}$.
24. The given figure shows $\triangle \mathrm{ABC}$ in which the bisector of $\angle \mathrm{B}$ intersects AC at D . If $\mathrm{BC}=a$, $\mathrm{AC}=b$, and $\mathrm{AB}=c$, then prove that the length of DC is $\frac{a b}{c+a}$

25. In the given figure, $\mathrm{AC}=12 \mathrm{~cm}, \mathrm{DE}=8 \mathrm{~cm}$, and $\mathrm{BC}=9 \mathrm{~cm}$. What is the length of EC ?

cbse \{guess	CBSEGuess.com

26. In $\triangle O P Q$, right- angled at $P, O P=7 \mathrm{~cm}$ and $O Q-P Q=1 \mathrm{~cm}$. Determine the values of $\sin Q$ and $\cos \mathrm{Q}$.
27. The following table represents the average daily earnings of 50 general stores in a market during a certain week. Find the mean daily earning of these stores by using step deviation method.

Daily earning (in rupees)	Number of stores
$1000-1500$	20
$1500-2000$	10
$2000-2500$	9
$2500-3000$	6
$3000-3500$	5

28. The following table shows the literacy (in \%) of 20 cities. Here, it is known that the missing value $y>10$. Find the value of y, if the median literacy rate is 62.5%.

Literacy rate in \%	Number of cities
More than equal to 0\%	20
More than equal to 25\%	18
More than equal to 50\%	y
More than equal to 75\%	6

SECTION - D

Long Answer type questions Q29 to Q34, each carry 4 Marks

29. State and Prove Pythagoras Theorem

OR
Prove that, if a line is drawn parallel to one side of a triangle intersecting the other two sides, then it divides the two sides in the same ratio
30. Solve the following system of linear equations graphically :

$$
3 x+y-11=0, x-y-1=0
$$

cbsefguess	CBSEGuess.com

Shade the region bounded by these lines and y - axis. Also, find the area of the region bounded by these lines and y - axis.
31. Using division algorithm, find the quotient and the remainder on dividing $p(x)$ by $g(x)$

$$
\mathrm{p}(\mathrm{x})=21 \mathrm{x}-12 \mathrm{x}^{2}-30+8 \mathrm{x}^{4}+8 \mathrm{x}^{3}, \quad \mathrm{~g}(\mathrm{x})=3 \mathrm{x}+2 \mathrm{x}^{2}-5
$$

32. Prove the identity:

$$
\frac{\tan \mathrm{A}+\sec \mathrm{A}-1}{\tan \mathrm{~A}-\sec \mathrm{A}+1}=\frac{1+\sin \mathrm{A}}{\cos \mathrm{~A}}
$$

OR

$$
\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta
$$

33. If $\angle B$ and $\angle Q$ are acute angles such that $\operatorname{sinB}=\sin Q$ then show that $\angle B=\angle Q$
34. During the medical check-up of 35 students of a class, their weights were recorded as follows:

Weight (in kg)	Number of students
Less than 38	0
Less than 40	3
Less than 42	5
Less than 44	9
Less than 46	14
Less than 48	28
Less than 50	32
Less than 52	35

Draw a less than type ogive for the given data.

[^2]
[^0]: CBSE Sample Papers | CBSE Guess Papers | CBSE Practice Papers | Important Questions | CBSE PSA | CBSE OTBA | Proficiency Test \| 10 Years Question Bank \| CBSE Guide | CBSE Syllabus | Indian Tutors | Teacher' Jobs CBSE eBooks | Schools | Alumni | CBSE Results | CBSE Datesheet |

[^1]: CBSE Sample Papers | CBSE Guess Papers | CBSE Practice Papers | Important Questions | CBSE PSA | CBSE OTBA | Proficiency Test | 10 Years Question Bank | CBSE Guide | CBSE Syllabus | Indian Tutors | Teacher' Jobs CBSE eBooks | Schools | Alumni | CBSE Results | CBSE Datesheet |

[^2]: CBSE Sample Papers | CBSE Guess Papers | CBSE Practice Papers | Important Questions | CBSE PSA \| CBSE OTBA \| Proficiency Test \| 10 Years Question Bank | CBSE Guide | CBSE Syllabus | Indian Tutors | Teacher' Jobs CBSE eBooks | Schools | Alumni | CBSE Results | CBSE Datesheet |

