

CBSEGuess.com

SUMMATIVE ASSESSMENT-1(2011)

Mathematics

CLASS-X

Time Allowed - 3hours

M.M - 80 marks

► GENERAL INSTRUCTIONS

(i) All questions are compulsory.

- (ii) This question paper consists of **34 questions** divided into four *sections* **A**,**B**,**C** *and* **D**.
- (iii) SECTION A are multiple choice questions carrying one mark each.
- (iv) SECTION B are very short answer type questions carrying two marks each.
- (v) SECTION C are short answer type questions carrying three marks each.
- (vi) SECTION D are long answer type questions carrying four marks each.
- (vii) Use of calculators and cell-phones are not permitted in the Examination Hall.

<u>SECTION – A</u>

Multiple choice questions Q1 to Q10, each carry 1 mark

- ► Write the correct answer in each of the following:
- 1. The least common multiple and the greatest common divisor of two numbers are 336 and 8 respectively If one of the numbers is 48, then the second number is
 - A: 54 B: 56 C: 62 D: 64
- 2. If the number 7875 can be prime factorized as $7875 = 3^a \times b^3 \times c^1$, then what are the respective values of *a*, *b*, and *c*?
 - A: 2, 3 and 1 B: 2, 2 and 5 C: 2, 3 and 5 D: 2, 5 and 7
- 3. Tan A is equal to

A:
$$\frac{\cos A}{\sqrt{1-\cos^2 A}}$$
 B: $\frac{\sec A}{\sqrt{1-\sec^2 A}}$ C: $\frac{\sin A}{\sqrt{1-\sin^2 A}}$ D: $\frac{1}{\sqrt{1-\sin^2 A}}$

4. The triangles that are always similar are

CBSE Sample Papers | CBSE Guess Papers | CBSE Practice Papers | Important Questions | CBSE PSA | CBSE_OTBA | Proficiency Test | 10 Years Question Bank | CBSE Guide | CBSE Syllabus | Indian Tutors | Teacher' Jobs CBSE eBooks | Schools | Alumni | CBSE Results | CBSE Datesheet | CBSE News

	cbs	guess	CBS	EGuess.com		
	A: isosceles tr C: right triang	0	B: scalene trian D: equilateral t	-		
5.	The pair of equations x	a = a and $y = b$ graphicall	ly represent lines whic	ch are		
	A: parallel C: coincident		B: intersecting a D: intersecting a			
6.	The values of mean and median are 5 and 6 respectively. The value of mode in such a situation is approximately equal to					
	A: 4	B: 8	C: 16	D: 18		
7.	In the given figure, ΔP The length of the side 1	QR and ∆DEF are simila DF is	ar to each other. sin R	$R = \frac{3}{5}$ and DE = 12 cm.		
	P	R E	F			
	A: 15	B: 16	C: 20	D: 21		
8.	If sec A = cosec B = $\frac{15}{7}$, then A + B is equal to					
	A: Zero	B: 90°	C: < 90°	D: >90°		
9.	Sin $(50^\circ + \theta)$ – Cos $(40^\circ - \theta)$ is equal to					
	A: 1	B: 0	C: 2	D: none of these		
10	10. Which of the following is the quadratic polynomial whose zeroes are $\frac{1}{2}$ and -3 ?					
	A: $x^2 + \frac{5}{2}x + $	B: $x^2 - \frac{5}{2}x + \frac{3}{2}$	C: $x^2 + \frac{5}{2}x - \frac{3}{2}$	D: $x^2 - \frac{5}{2}x - \frac{3}{2}$		
		apers <u>CBSE Guess Papers</u> IBA <u>Proficiency Test 10 Ye</u>				

PSA | CBSE_OTBA | Proficiency Test | 10 Years Question Bank | CBSE Guide | CBSE Syllabus | Indian Tutors | Teacher' Jobs CBSE eBooks | Schools | Alumni | CBSE Results | CBSE Datesheet | CBSE News

SECTION - B

Very Short Answer type questions Q11 to Q18, each carry 2 Marks

- **11.** Explain why $7 \times 11 \times 13 + 13$ and $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 + 5$ are composite numbers.
- 12. Determine the value of k for which the system of equation

$$2x + ky = 1$$

 $5x - 7y = 5$, has a unique solution.

- 13. Find the quadratic polynomial, the sum and product of zeroes are $\frac{1}{4}$, -1
- **14.** In two similar triangles ABC and DEF, If AB = 1.2 cm and DE = 1.4 cm, then find the ratio of the areas of $\triangle ABC$ and $\triangle DEF$.
- **15.** A girl of height 90 cm is walking away from the base of a lamp post at a speed of 1.2 m/s. If the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds.

16. If
$$\tan(A-B) = \frac{1}{\sqrt{3}}$$
 and $\tan(A+B) = \sqrt{3}, 0^{\circ} < A+B \le 90^{\circ}, A > B$ find A and B.

17. If the mode of the following distribution is 68, then find the missing frequency (f_1) corresponding to the class interval 60 - 80.

Class interval :	0 - 20	20-40	40 - 60	60 - 80	80-100
Frequency :	7	14	8	f_1	3

18. The following table gives production yield per hectare of wheat of 100 farms of a village.

Production yield (in kg/ha)	50 - 55	55 - 60	60 - 65	65 - 70	70 - 75	75 - 80
Number of farms	2	8	12	24	38	16

Change the distribution to a more than type distribution.

SECTION - C

Short Answer type questions Q19 to Q28, each carry 3 Marks

- **19.** Prove that $\sqrt{3}$ is an irrational number.
- **20.** Use Euclid's division lemma to show that the square of any positive integer is either of the form 3m or 3m + 1 for some integer m.

CBSEGuess.com

21. A two digit number is 4 times the sum of its digits. If 18 is added to the number; the digits are reversed. Find the number.

OR

Places A and B are 100 km apart on a highway. One car starts from A and another from B at the same time. If the cars travel in the same direction at different speeds, they meet in 5 hours. If they travel towards each other, they meet in 1 hour. What are the speeds of the two cars ?

OR

2 women and 5 men can together finish an embroidery work in 4 days, while 3 women and 6 men can finish it in 3 days. Find the time taken by 1 women alone to finish the work, and also that taken by 1 man alone.

- **22.** Obtain all other zeroes of $3x^4 + 6x^3 2x^2 10x 5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.
- **23.** If $\cos \theta + \sin \theta = \sqrt{2} \sin \theta$, show that $\sin \theta \cos \theta = \sqrt{2} \cos \theta$.

- If $\tan\theta + \sin\theta = m$, $\tan\theta \sin\theta = n$, then show that $m^2 n^2 = 4\sqrt{mn}$.
- **24.** The given figure shows $\triangle ABC$ in which the bisector of $\angle B$ intersects AC at D. If BC = *a*,
 - AC = *b*, and AB = *c*, then prove that the length of DC is $\frac{ab}{c+a}$

25. In the given figure, AC = 12 cm, DE = 8 cm, and BC = 9 cm. What is the length of EC?

- **26.** In $\triangle OPQ$, right- angled at P, OP = 7 cm and OQ PQ = 1 cm. Determine the values of sin Q and cos Q.
- **27.** The following table represents the average daily earnings of 50 general stores in a market during a certain week. Find the mean daily earning of these stores by using step deviation method.

Daily earning (in rupees)	Number of stores
1000 - 1500	20
1500 - 2000	10
2000 - 2500	9
2500-3000	6
3000 - 3500	5

28. The following table shows the literacy (in %) of 20 cities. Here, it is known that the missing value y > 10. Find the value of y, if the median literacy rate is 62.5%.

Literacy rate in %	Number of cities
More than equal to 0%	20
More than equal to 25%	18
More than equal to 50%	У
More than equal to 75%	6

SECTION - D

Long Answer type questions Q29 to Q34, each carry 4 Marks

29. State and Prove Pythagoras Theorem

OR

Prove that, if a line is drawn parallel to one side of a triangle intersecting the other two sides, then it divides the two sides in the same ratio

30. Solve the following system of linear equations graphically :

$$3x + y - 11 = 0, x - y - 1 = 0$$

CBSE Sample Papers | CBSE Guess Papers | CBSE Practice Papers | Important Questions | CBSE PSA | CBSE_OTBA | Proficiency Test | 10 Years Question Bank | CBSE Guide | CBSE Syllabus | Indian Tutors | Teacher' Jobs CBSE eBooks | Schools | Alumni | CBSE Results | CBSE Datesheet | CBSE News

Shade the region bounded by these lines and y - axis. Also, find the area of the region bounded by these lines and y - axis.

31. Using division algorithm, find the quotient and the remainder on dividing p(x) by g(x)

$$p(x) = 21x - 12x^2 - 30 + 8x^4 + 8x^3$$
, $g(x) = 3x + 2x^2 - 5$

32. Prove the identity:

$$\frac{\tan A + \sec A - 1}{\tan A - \sec A + 1} = \frac{1 + \sin A}{\cos A}$$

$$OR$$

$$\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 1 + \sec \theta \cos ec \theta$$

- **33.** If $\angle B$ and $\angle Q$ are acute angles such that sinB = sinQ then show that $\angle B = \angle Q$
- **34.** During the medical check-up of 35 students of a class, their weights were recorded as follows:

Weight (in kg)	Number of students
Less than 38	0
Less than 40	3
Less than 42	5
Less than 44	9
Less than 46	14
Less than 48	28
Less than 50	32
Less than 52	35

Draw a less than type ogive for the given data.